Copied to
clipboard

G = C2×D42order 128 = 27

Direct product of C2, D4 and D4

direct product, p-group, metabelian, nilpotent (class 2), monomial, rational

Aliases: C2×D42, C248C23, C255C22, C4212C23, C23.22C24, C22.51C25, C22.1082+ 1+4, C239(C2×D4), C42(C22×D4), C4⋊C419C23, (C2×D4)⋊17C23, (D4×C23)⋊14C2, C22⋊C47C23, (C2×C4).53C24, C2.18(D4×C23), C222(C22×D4), (C4×D4)⋊100C22, C41D446C22, C4⋊D468C22, (C22×C4)⋊16C23, (C2×C42)⋊50C22, (C23×C4)⋊34C22, C22≀C230C22, (C22×D4)⋊61C22, C2.15(C2×2+ 1+4), (C2×C4×D4)⋊78C2, (C2×C4)⋊18(C2×D4), (C2×C4⋊D4)⋊58C2, (C2×C41D4)⋊24C2, (C2×C22≀C2)⋊23C2, (C2×C4⋊C4)⋊132C22, (C2×C22⋊C4)⋊41C22, SmallGroup(128,2194)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C2×D42
C1C2C22C23C24C25D4×C23 — C2×D42
C1C22 — C2×D42
C1C23 — C2×D42
C1C22 — C2×D42

Generators and relations for C2×D42
 G = < a,b,c,d,e | a2=b4=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 2428 in 1268 conjugacy classes, 484 normal (8 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, D4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C22≀C2, C4⋊D4, C41D4, C23×C4, C22×D4, C22×D4, C25, C2×C4×D4, C2×C22≀C2, C2×C4⋊D4, C2×C41D4, D42, D4×C23, C2×D42
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C25, D42, D4×C23, C2×2+ 1+4, C2×D42

Smallest permutation representation of C2×D42
On 32 points
Generators in S32
(1 27)(2 28)(3 25)(4 26)(5 9)(6 10)(7 11)(8 12)(13 22)(14 23)(15 24)(16 21)(17 30)(18 31)(19 32)(20 29)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 9)(2 12)(3 11)(4 10)(5 27)(6 26)(7 25)(8 28)(13 30)(14 29)(15 32)(16 31)(17 22)(18 21)(19 24)(20 23)
(1 13 10 31)(2 14 11 32)(3 15 12 29)(4 16 9 30)(5 17 26 21)(6 18 27 22)(7 19 28 23)(8 20 25 24)
(1 29)(2 30)(3 31)(4 32)(5 23)(6 24)(7 21)(8 22)(9 14)(10 15)(11 16)(12 13)(17 28)(18 25)(19 26)(20 27)

G:=sub<Sym(32)| (1,27)(2,28)(3,25)(4,26)(5,9)(6,10)(7,11)(8,12)(13,22)(14,23)(15,24)(16,21)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9)(2,12)(3,11)(4,10)(5,27)(6,26)(7,25)(8,28)(13,30)(14,29)(15,32)(16,31)(17,22)(18,21)(19,24)(20,23), (1,13,10,31)(2,14,11,32)(3,15,12,29)(4,16,9,30)(5,17,26,21)(6,18,27,22)(7,19,28,23)(8,20,25,24), (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,14)(10,15)(11,16)(12,13)(17,28)(18,25)(19,26)(20,27)>;

G:=Group( (1,27)(2,28)(3,25)(4,26)(5,9)(6,10)(7,11)(8,12)(13,22)(14,23)(15,24)(16,21)(17,30)(18,31)(19,32)(20,29), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,9)(2,12)(3,11)(4,10)(5,27)(6,26)(7,25)(8,28)(13,30)(14,29)(15,32)(16,31)(17,22)(18,21)(19,24)(20,23), (1,13,10,31)(2,14,11,32)(3,15,12,29)(4,16,9,30)(5,17,26,21)(6,18,27,22)(7,19,28,23)(8,20,25,24), (1,29)(2,30)(3,31)(4,32)(5,23)(6,24)(7,21)(8,22)(9,14)(10,15)(11,16)(12,13)(17,28)(18,25)(19,26)(20,27) );

G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,9),(6,10),(7,11),(8,12),(13,22),(14,23),(15,24),(16,21),(17,30),(18,31),(19,32),(20,29)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,9),(2,12),(3,11),(4,10),(5,27),(6,26),(7,25),(8,28),(13,30),(14,29),(15,32),(16,31),(17,22),(18,21),(19,24),(20,23)], [(1,13,10,31),(2,14,11,32),(3,15,12,29),(4,16,9,30),(5,17,26,21),(6,18,27,22),(7,19,28,23),(8,20,25,24)], [(1,29),(2,30),(3,31),(4,32),(5,23),(6,24),(7,21),(8,22),(9,14),(10,15),(11,16),(12,13),(17,28),(18,25),(19,26),(20,27)]])

50 conjugacy classes

class 1 2A···2G2H···2W2X···2AE4A···4H4I···4R
order12···22···22···24···44···4
size11···12···24···42···24···4

50 irreducible representations

dim111111124
type+++++++++
imageC1C2C2C2C2C2C2D42+ 1+4
kernelC2×D42C2×C4×D4C2×C22≀C2C2×C4⋊D4C2×C41D4D42D4×C23C2×D4C22
# reps12441164162

Matrix representation of C2×D42 in GL5(ℤ)

-10000
01000
00100
000-10
0000-1
,
10000
01-200
01-100
000-10
0000-1
,
10000
01-200
00-100
00010
00001
,
10000
0-1000
00-100
000-1-2
00011
,
-10000
01000
00100
000-1-2
00001

G:=sub<GL(5,Integers())| [-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,1,1,0,0,0,-2,-1,0,0,0,0,0,-1,0,0,0,0,0,-1],[1,0,0,0,0,0,1,0,0,0,0,-2,-1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,-1,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,0,-2,1],[-1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,-2,1] >;

C2×D42 in GAP, Magma, Sage, TeX

C_2\times D_4^2
% in TeX

G:=Group("C2xD4^2");
// GroupNames label

G:=SmallGroup(128,2194);
// by ID

G=gap.SmallGroup(128,2194);
# by ID

G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽